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Abstract. Overall dynamic response and creep behavior of random multi-component composites with
nonlinear constituents are investigated. As in Rabotnov's type theory, the behavior of the viscoelastic
material is described by a quasi-linear law. The nonlinear function of instant elastic stress plays the role like
that of the strain in the linear case. We use constitutive equations for statistical fluctuations of first and
second order displacement, nonlinear Green deformation, nominal or Cauchy stress in the representative
volume. Upon application of the integral Carson and Fourier transforms, the boundary value problem for
the local stress and strain fields becomes similar to a linear elastic problem. The programs from NAG-
Fortran library are used. The model suggested may be useful for long-term durability prediction under
cyclic loading.
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Introduction. On the basis of the nonlinear theory of viscoelasticity, the general constitutive
equation for isotropic composites in the presence of initial stress is derived. Expressions for the
nominal stress tensors in a finitely deformed configuration are given along with the elasticity
tensors. The equations governing infinitesimal motions superimposed on a finite deformation are
then used to study the effects of initial stress on the creep parameters in a homogeneously
deformed, and initially stressed isotropic materials. The presence of initial stresses in solid materials
is very different from the corresponding response in the absence of initial stresses. Some analogous
problems in geophysics are very important too, the high stress developed due to gravity has a strong
influence on the propagation speed of elastic waves etc.

Research objective. Superimposed on the equilibrium configuration, defined by x = x(X),
we now consider an incremental motion x(X,?), where ¢ is time. Here and in the following a

superposed dot indicates an incremental quantity, increments are considered as small, and the
resulting incremental equations are linearized in the increments

X(t) = x(0)+u(r), u(t)=x(). )

Thus, 5c(t) represents the displacement from x(0) to current position, X(X,#), and we shall also
express it in Eulerian form by writing the displacement vector as a function of x and ¢, namely
u=u(x,t). The corresponding increment in the deformation gradient, ' = H , is expressible as

F=F+F; F(t)=yF, y=0u/dx )

The linearized, incremental nominal, (KirchhofY), stress T takes the forms
T(X)=t(X)=AH(X); t“(X)=A"Y(X)H ,(X);

() =Cy(x); 7" (x)=C" (X, (x); JC™ = F, F A,

pa” qp

3

If X be the position vector of a material point in reference configuration, then Div denote the
gradient operator with respect to X. We use Greek (Roman) characters for indices associated with

oW (F)
OF OF
nominal 7(X), and Cauchy &(x) stresses are given by

the reference (current) configuration. A= is the fourth-order elasticity tensor. The
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The problem is to define correctly the equation of motion

Divt = pyu,, divr(x)=pu,,(x,t). %)
Then for representative volume of composite we obtain

cr <u/ >,qp = p<ul >,n (6)
A special case of the mechanics of
onisendte materials is finite elastic deformations in which
T ‘ ‘ ‘ ‘ the strains are small but the linear theory is no
o0 longer adequate, so one may use second-order
P elasticity. In this theory, the strain energy
- Vit function is expanded to the third order of strain

and the stress is second order in the strain. It is
the Green strain tensor that is used and for an
isotropic material the strain energy is expressed
in terms of strain invariants. We commence with
the general tensorial form of quasilinear
viscoelasticity (QLV) like that proposed by
Rabotnov

T (x,0) = Lg(t—tl)%dtl .12

s

m

= 5000

e,

5600

5400
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Here g(¢) is the reduced stress relaxation

fourth-order tensor, 7(¢) denotes the nominal stress, while z°(e,f) is an instantaneous strain
measure. The latter may be thought of as an equivalent (instantaneous) elastic stress. This tensorial
integral identity is the natural generalization of the simple one-dimensional relationship, proposed
by Rabotnov. We consider an elastic body that is subject to an initial stress T,(X) in some reference

configuration.

Incremental viscoelastic deformation of composites. The linearized theory of elasticity of pre-
deformed bodies is increasingly used in solving important practical problems: elastic stability, wave
propagation, etc. In this regard, it is necessary to substantiate the possibility of transferring the
methods and results of this theory to heterogeneous viscoelastic media, including composites and
geological materials. Although theory of pre-stressed materials associated with hyperelastic ones is
well established, the analogous theory associated with QLV materials is not yet developed. We shall
therefore derive such a theory. The viscoelasticity theory is extended in order to deal with materials
that are subject to finite deformation, and whose constitutive response is nonlinear. In particular, a
modified QLV theory is developed, where retardation is independent of stress.

r(xJ):J;h(r—q)nggiﬁldq. (13)

It follows that in the case of a uniform preliminary deformation of the equilibrium equation of the
general theory, they coincide in form with the analogous equations of the classical theory of
elasticity. The difference between this formulation and the linear theory is that the mean gradients

of displacement increments <H /.a> are of interest here, and not their symmetric combinations e; .

And H,, =y,F,, . Substituting this solution into the second-order averaged physical relations from,
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we find the relationship between the macroscopic nominal stresses, T, and H,, the second

approximation of gradients H

7}2] :p[z]l+2/~‘e[2]7(pH+/1H2+7e2)[2] (14)

For a longitudinal wave in non-homogeneous geological media, velocity reduces to

pOVPZ:ﬂ+2y+§(7l+10,u+3v1+10V2+8V3)E, 15)
E=-x/T,

As an example, on the Fig.l there are the results of prediction of longitudinal velocity in
viscoelastic non-homogeneous media under large preliminary stress. Firstly, we can see a
significant difference between linear (dashed) and our (solid) prediction. Secondly, there is a rather
good coincidence with experimental data (circles). Some examples of multi-component materials
were modelled, elastic constants of which are presented in Table 1.

Table 1
Material A H 12 v, V3
Aluminium 28 —204.0 27.6 —228.0 —-197.0 —-57.0
Pyrex glass 264.0 27.5 420.0 —118.0 105.0
SiO2 melted 72.0 313 —44.0 93.0 —-11.0

Basic maintenance and results of research. The fractional exponential Rabotnov's type operator
belongs to the class of well-studied resolvent operators. It has a number of properties used in
decoding operator expressions [7]. In those cases, where knowledge of the exact result of the
operator’s action on a constant or variable value is required, we will use the Fortran F90 shell
program package [12]. Using the correspondence principle, we analyze the dynamic problem for an
isotropic composite material under a stationary, cyclic loading mode. If a viscoelastic material is
affected by a periodic perturbation with frequency «, then in (14) it is advisable to move to
complex values u(w) = p (@) +iy (@), where

. T, o
zsm—2 +z 2 oS 5 ]
(@) = p|1=Gp" ———=——— | (@)= p| 1= ————=——; z=po"".  (16)
. 2 . 2
1+2251n7+z 1+2251n7+z

Dispersion and attenuation effects were evaluated with (15), (16) for composites and some
geological structures. So, nonlinear dynamic viscoelastic problem is investigated in second order
approximation theory when the gradient deformation terms higher than second order are neglected.
Convex potential function or time-dependent functional are used to build up overall constitutive
relations.

The criterion of long-term strength is the time limited increment of creep deformations. As an
approximate, we use the criterion of critical deformation. Its essence lies in the fact that the critical
time and critical forces are determined from the equality of the creep strain to that critical strain,
which is calculated under the assumption that the viscoelastic body is deformed in an elastic region.
Thus, the critical time is defined as the time required to achieve, at a given load, the creep strain of
critical strain values for an elastic body. The most important extension of this work concerns using
it to determine the second moment of viscoelastic stress increments. The developed method may
find a variety of applications in the mechanics of materials, geophysics, etc.
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JluHaMiuHi BSI3KONMPYKHi BJIACTHBOCTI i30TPONHMX KOMMO3UTIB i3 mepeIHANpPY:KEHUMHU
KOMIIOHEHTAMH

MacJios B.II.

Anomauia. [Jocnioxceno 3a0a4y npocHO3Y8AHHA HABCOEHUX OUHAMIYHUX 61ACMUBOCHEl [ No63yHocmi
KOMNO3umi6 3 HeliHiliHuMu KoMnoHewmamu. 32i0no 3 meopicio muny Pabomnosa noeedinka
8'SA3KONPYICHOLO MAMEPIALy ORUCYEMbCS KEAZLMHIIHUM 3aKOHOM. ChopMynb08aHO pO36'A3VI0UI DIGHAHHS
ona gaykmyayii nepemiwens nepuio2o i 0py20e0 nopsioky manocmi. InmezpanvHumu nepemeopenHaMu
Kapcona i @yp'e kpaiiosa 3a0aua 36edena 00 ananociynoi npysicroi. 3anpononosana mooenv modice bymu
KOPUCHA 015 NPO2HO3Y8AHHA 00620MPUBANOT MIYHOCMI NPU YUKTTUHOMY HABAHMANCEHHI.

Kniouosi crosa. 6s3xonpyaicti KomMnosumu, OUHAMIYHI 81ACMUBOCMIE; YUKITUHE HABAHMANCEHHSL.

JIluHaMu4ecKue BSA3KOYNPYIHe CBOWCTBA HM30TPONMHBIX KOMIIO3UTOB C NpeJIHANPSKEHHBIMH
KOMIIOHEHTAMH

Maciaos B.I1.

Annomayusa. Hccnedoosana 3a0a4a npoeHo3UpoBanuUs NPUBEOEHHbIX OUHAMUYECKUX CBOUCIE U NONZYHecmi
KomMno3umos ¢ Henunelinoimu  cocmagnsiowumy. Credys meopuu muna Pabomnosa, nogedenue
8A3KOYNPY2020 Mamepuana onucvieaemcs Keasununeinvim saxonom. Copmynuposanvi paspeuwiaioujue
ypaguenus Ona GayKkmyayuil nepemewjenuil nepeoso u 6mopozo nopaoka marocmu. HMumeepanvhvimu
npeobpasosanuamu Kapcona u ®@ypve kpaesas 3adaua ceedena K aHATOSUYHOU 3adaye Ynpyeocmu.
IIpeonoocennas moodenb modcem Obimb noae3Ha O NPOSHOZUPOBAHUS ONUMETbHOU NPOYHOCMU Npu
YUKTUYECKOM HAZPYICEHUU.

Kriouesvie cnosa. ésasxkoynpyaue KoMnosumul; OuHaMu4ecKue ceoLUCmea, YUKIUYeckoe Hazpysicenue.
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