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Dynamic viscoelastic properties of isotropic composites  
with prestressed components 

Maslov B.P.  
S.P. Timoshenko Institute of Mechanics NAS Ukraine, Kyiv, Ukraine  

Abstract. Overall dynamic response and creep behavior of random multi-component composites with 
nonlinear constituents are investigated. As in Rabotnov's  type theory, the behavior of the viscoelastic 
material is described by a quasi-linear law. The nonlinear function of instant elastic stress plays the role like 
that of the strain in the linear case. We use constitutive equations for statistical fluctuations of first and 
second order displacement, nonlinear Green deformation, nominal or Cauchy stress in the representative 
volume. Upon application of the integral Carson and Fourier transforms, the boundary value problem for 
the local stress and strain fields becomes similar to a linear elastic problem. The programs from NAG-
Fortran library are used. The model suggested may be useful for long-term durability prediction under 
cyclic loading. 
Keywords. viscoelastic composite;dynamic properties; cyclic loading. 

Introduction. On the basis of the nonlinear theory of viscoelasticity, the general constitutive 
equation for isotropic composites in the presence of initial stress is derived. Expressions for the 
nominal stress tensors in a finitely deformed configuration are given along with the elasticity 
tensors. The equations governing infinitesimal motions superimposed on a finite deformation are 
then used to study the effects of initial stress on the creep parameters in a homogeneously 
deformed, and initially stressed isotropic materials. The presence of initial stresses in solid materials 
is very different from the corresponding response in the absence of initial stresses. Some analogous 
problems in geophysics are very important too, the high stress developed due to gravity has a strong 
influence on the propagation speed of elastic waves etc. 

Research objective. Superimposed on the equilibrium configuration, defined by ( ) x X , 
we now consider an incremental motion ( , )tx X , where t  is time. Here and in the following a 
superposed dot indicates an incremental quantity, increments are considered as small, and the 
resulting incremental equations are linearized in the increments 

.
( ) (0) ( ), ( ).) (t t t tx x xu u  (1) 

Thus, 
.
( )tx  represents the displacement from (0)x  to current position, ( , )tx X , and we shall also 

express it in Eulerian form by writing the displacement vector as a function of x  and t , namely 
( , )tu u x . The corresponding increment in the deformation gradient, F H , is expressible as

.
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The linearized, incremental nominal, (Kirchhoff), stress T  takes the forms 
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If X  be the position vector of a material point in reference configuration, then Div  denote the 
gradient operator with respect to X . We use Greek (Roman) characters for indices associated with 

the reference (current) configuration. 
2 ( )W F
F F  is the fourth-order elasticity tensor. The

nominal ( )T X , and Cauchy ( )x  stresses are given by 
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The problem is to define correctly the equation of motion  

0 , ( ( ,) , )tt ttdD v i ti v u xt u x . (5) 
Then for representative volume of composite we obtain 
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j i ttqp
C u u (6)

A special case of the mechanics of 
materials is finite elastic deformations in which 
the strains are small but the linear theory is no 
longer adequate, so one may use second-order 
elasticity. In this theory, the strain energy 
function is expanded to the third order of strain 
and the stress is second order in the strain. It is 
the Green strain tensor that is used and for an 
isotropic material the strain energy is expressed 
in terms of strain invariants. We commence with 
the general tensorial form of quasilinear 
viscoelasticity (QLV) like that proposed by 
Rabotnov 
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Here ( )tg  is the reduced stress relaxation 
fourth-order tensor, ( )t  denotes the nominal stress, while ( , )e te  is an instantaneous strain 
measure. The latter may be thought of as an equivalent (instantaneous) elastic stress. This tensorial 
integral identity is the natural generalization of the simple one-dimensional relationship, proposed 
by Rabotnov. We consider an elastic body that is subject to an initial stress ( )iT X  in some reference 
configuration.  

Incremental viscoelastic deformation of composites.  The linearized theory of elasticity of pre-
deformed bodies is increasingly used in solving important practical problems: elastic stability, wave 
propagation, etc. In this regard, it is necessary to substantiate the possibility of transferring the 
methods and results of this theory to heterogeneous viscoelastic media, including composites and 
geological materials. Although theory of pre-stressed materials associated with hyperelastic ones is 
well established, the analogous theory associated with QLV materials is not yet developed. We shall 
therefore derive such a theory. The viscoelasticity theory is extended in order to deal with materials 
that are subject to finite deformation, and whose constitutive response is nonlinear. In particular, a 
modified QLV theory is developed, where retardation is independent of stress.  

1
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t
xx h . (13)

It follows that in the case of a uniform preliminary deformation of the equilibrium equation of the 
general theory, they coincide in form with the analogous equations of the classical theory of 
elasticity. The difference between this formulation and the linear theory is that the mean gradients 
of displacement increments jH  are of interest here, and not their symmetric combinations ije . 
And ja jm maH F . Substituting this solution into the second-order averaged physical relations from, 

Fig. 1 
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 1.       

we find the relationship between the macroscopic nominal stresses, T , and [2]H , the second 
approximation of gradients H   

2 2
[2] [2] [2] [2]

2p pT 1 e H H e    (14) 

For a longitudinal wave in non-homogeneous geological media, velocity reduces to 
2
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As an example, on the Fig.1 there are the results of prediction of longitudinal velocity in 
viscoelastic non-homogeneous media under large preliminary stress. Firstly, we can see a 
significant difference between linear (dashed) and our (solid) prediction. Secondly, there is a rather 
good coincidence with experimental data (circles). Some examples of multi-component materials 
were modelled, elastic constants of which are presented in Table 1. 

Table 1 

Material    
1  2 3

Aluminium 2S 204.0 27.6 228.0 197.0 57.0
Pyrex glass 264.0 27.5 420.0 118.0 105.0
SiO2 melted 72.0 31.3 44.0 93.0 11.0

Basic maintenance and results of research. The fractional exponential Rabotnov's type operator 
belongs to the class of well-studied resolvent operators. It has a number of properties used in 
decoding operator expressions [7]. In those cases, where knowledge of the exact result of the 
operator’s action on a constant or variable value is required, we will use the Fortran F90 shell 
program package [12]. Using the correspondence principle, we analyze the dynamic problem for an 
isotropic composite material under a stationary, cyclic loading mode. If a viscoelastic material is 
affected by a periodic perturbation with frequency , then in (14) it is advisable to move to 
complex values ( ) ( ) ( )R i , where 
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Dispersion and attenuation effects were evaluated with (15), (16) for composites and some 
geological structures. So, nonlinear dynamic viscoelastic problem is investigated in second order 
approximation theory when the gradient deformation terms higher than second order are neglected. 
Convex potential function or time-dependent functional are used to build up overall constitutive 
relations.  

The criterion of long-term strength is the time limited increment of creep deformations. As an 
approximate, we use the criterion of critical deformation. Its essence lies in the fact that the critical 
time and critical forces are determined from the equality of the creep strain to that critical strain, 
which is calculated under the assumption that the viscoelastic body is deformed in an elastic region. 
Thus, the critical time is defined as the time required to achieve, at a given load, the creep strain of 
critical strain values for an elastic body. The most important extension of this work concerns using 
it to determine the second moment of viscoelastic stress increments. The developed method may 
find a variety of applications in the mechanics of materials, geophysics, etc. 
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