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Abstract. It is researched influence of inertia force as an internal volumetric potential force on the nature of the
displacement of the center of mass of a solid body (artificial satellite) in a geostationary orbit. It is developed mechanism
to simulate the movement of a satellite in a geostationary orbit, which contains rotating disks of various diameters and
provides uniform motion of the axis of rotation of a small-diameter disk around a larger-diameter disk with equal angular
velocities of rotation of these disks. Moreover, the mechanism provides the possibility of rotation of the disk of small
diameter both in the direction of rotation of the disk of large diameter, and in the opposite direction. In both cases, the
total kinetic energy of the small disk remains constant, but the energy consumption of the sources of forces that provide
each of these movements change. The established relationship for geostationary satellites of various designs and purposes
remains the same.
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Introduction. The research of theoretical calculations of processes and phenomena often consist
of the improvement of various models made for the mathematical description of the object of study
[1]. Among the variety of existing models, mechanical models occupy an important place, which
make it possible to assess the correctness of the assumptions made for theoretical analysis of the
object of study.

Purpose of work. Using the basic ideas about the motion of a rigid body in a geostationary orbit,
justify and develop a mechanical model for studying the characteristic features of the motion of
geostationary satellites.

It is shown in [3] that the gravitational field of the Earth could be represented as the result of
the interaction of two potential fields: the displacement field and the velocity field. It is because any
material body (material point) represents object, the volume of which can be less than any previously
given small volume. The point of application of external force to the material body is a geometric
point, the dimensions of which are always smaller than the dimensions of the material body [3]. That
is, within each body, internal forces interact with external forces applied to the body.

The balance of power when body m is falling in the stationary gravitational field of the Earth
(Fig. 1 a) without taking into account the resistance of the atmosphere is determined by the equation

Gr(r)-@l(r)=0, (1)

where cDg) (r)=-mg(r)? - the force of inertia of the body m, which is the internal volumetric

potential resistance force® [3], counteracting external force of motion - gravity force Gp(r)=mg(r)

on a distance » from the center of mass of the Earth.
The magnitude of the gravity of the body m in the stationary force field of the Earth (Fig.1) is
determined by the Newton's law of universal gravitation in the form of a function [4]

Uy(r)=G, @ —mg(r)=G(r), 2)

! Sir William Thomson, 1st Baron Kelvin «I can say that I understood the phenomenon, if I can create a mechanical model for ity [2].

2 Hereinafter, the superscript is used in the notation of internal force (7). Lowercase letters /' and Q separated by a comma from other letters and
numbers of the lower index indicate the nature of the force (driving forces - F, motion resistance forces - Q).
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where U,,(r) - function determining the potential of the body m in a stationary force field of the
Earth; G, =6,6743 -107"" m*? /s’kg - gravitational constant; g(r) - acceleration of
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Fig. 1. Steady movement of the body 72 in the gravitational field of the Earth: 4 — in the stationary
gravitational field; b - during the rotation of the gravitational field

gravity of body m in a potential force field of the Earth.
It was shown in [3] that the potential velocity field always corresponds to the potential velocity
field with a pole P, in the center of mass M for which

V(Vu(r))=grad(V,(r))=-grad(U,(r))==V(U,(r)), 3)

T(r ) mvz
r o
the stationary gravitational field of the Earth, which determines the value of the inertia force at the
point A(r) of the force velocity field (Fig. 1 a).
From the condition of conservation of mechanical energy with a free fall of a body m without
atmospheric resistance from a height 2 =r—r; (Fig. 1 a) follows [5]

where V,,(r)= @M (r)=-mg(r) - the potential of the velocity field for the body m in

Epy(r)=H(r)+T(r)=H(rg)+T(rg)=Ep(rg )= (1. )+ T (1. )=Ep(rz), (4)
where Ey (r) and Eu(rg), Egn(re); H(r)=mg(r)r and II(rg)=mg(rg)rg, I(r.)=mg(r.)r.;
2 2 2

my, my,, mvy, . . .
T(r)= > and T(rz)= PR T(r,)= > - respectively, total mechanical energy, potential

energy, kinetic energy of the body m in the points A(r) and B(rz ), A(r.) of the gravitational field
of the Earth (., - radius of the geostationary orbit).
When the body m falls in the gravitational field of the Earth rotating with an angular velocity

L _(oyr) O (oyr)
c,r = - an ac,c - -
2 2 2 2

respectively, act on the body m at the points A(r) and A(r,), which determine the action of

oy, (Fig. 1b), centripetal accelerations a

b

centrifugal inertia forces @C(l,) =-ma,, and @C(ZC) =-ma, ., providing the condition for the balance of
forces at the points A4(r) and A(r.) [6]:

Py p(r)=Gpa(r) - @) =~ (r)- L") ) =—m(g(r)-a,, )= (1), (5)

P, =Gp(r,)- P =0, (6)
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where P, o(r)#0 and P,.=0 -body m weight on the equipotential surface of the rotating
gravitational field of the Earth, which determines the potential energy of the body
r'(r) =P, p(r)r#0 and I1 ’(r.) =0, when the linear velocity of rotation of the body m is equal to

the first cosmic velocity v, = 3,072 m/s [6].
From (4), (6), it follows:

Em(re) = 11(re )+ T(re )= 2T (1) = Epy(r ) =11 (r, )+ T/ (1) =T/ (1) = Epy(r, ), ®)
T/(rc)=2T(rc)=mv62. )

It is shown in Fig. 2 mechanism simulating the motion of a body m at a geostationary orbit.
The two-link mechanism contains a disk /, with radius r; pivotally mounted on the axis of rotation

0 and is rigidly (as a whole body) connected with the carrier /, with length /=7, +r,. The disc 2 is
pivotally mounted at the end of the carrier 1, , the axis of rotation of which describes the trajectory
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Fig. 2. The mechanism for modeling the motion of a rigid body in a geostationary orbit: a, b, d, e - schemes of
the mechanism; b, f- schemes of linear and angular velocities of the links of the mechanism

(circle with radius 7, ,, =1,), which simulates the geostationary orbit along which the body m (disk
2) moves, when r, <<r, ,, =r; and the angular velocity », and it also models the angular velocity of

the rotating gravitational field of the Earth.
Depending on the contact conditions of the disks 7, and 2 at the point (K ) of their interface,

the two-link mechanism can structurally represent two different mechanisms, each of which
determines the distribution of energy-force parameters that provide different conditions for the disk
2 to move around the circle with a radius 7, ,, =1,.

In Fig. 2 a, b, c it is shown a mechanism for which (Fig. 2 «) in the interaction point K of the
disks 7, and 2 there is no slipping of the points £/ (disk 7,)and k2 (disk 2). Analysis of the schemes

of linear and angular velocities (Fig. 2 b, ¢) [7] and the trajectories of the points k/ and k2 also
shows. The disk 2 rotates in the direction of rotation of the disk 7, at an angular speed w, =, the

same points k/ and k2, which at the beginning of the revolution were at the mating point X , after
making one revolution of the disks 7, and 2 are again aligned at the K . The similarly moves the

«satellite-wheel» in a geostationary orbit [8]. The kinetic energy of the disk

2
T(rem)= +T:mv0. (10)
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where J, =mr; - moment of inertia of the disk 2 in the form of a heavy disk and v, = w,r, =01, ,

The condition for uniform rotation of the disk provides a diagram of the forces applied to the disk 2
. The forces of motion P,;, . and P, » act on the disk 2 from the side of the link 7 (disk 7, and

carrier /, ) and the simulate influence of the rotating gravitational field of the Earth on the «satellite-
wheel». The resistance force P, , acts on the disk from the side of stationary field of the Earth, which

simulates the resistance force P, , to move the «satellite-wheel».
2P=Pyr+Pr—Pp=0 and M =Py o1, —Po(r,—1p)=0. (11)

Therefore, the «satellite-wheel» movement is provided by the work of the forces of the rotating
gravitational field of the Earth, which is equal to the kinetic energy of the satellite-wheel (T/ (r.))s

and additional energy is not required for the motion of the «satellite-wheel».
In Fig. 2 d, e, f'it is shown a mechanism for which (Fig. 2 d) there is a displacement without
friction of the disk 2 relative to the disk 7, (point k2 relative to the point /) at the point K of

contact of the disks /, and 2. An analysis of the schemes of linear and angular velocities shows that
this condition is met when w, = -, , when the same point k2 is constantly at the conjugation point

K of the rotating disks, due to the interaction of forces P, ., Pz( ’; and P;
P=Pyp+PY—Po=0and IM=P,-P, ply=0, (12)

where Pz( ’ﬁ =0,5( Py, - + Py, ) 1s the internal force simulating the reactive thrust of the geostationary

satellite’s energy source, which is equal to half the motion forces of the rotating gravitational field of
the Earth acting on the satellite.

A change in the direction of the angular velocity of the disk 2 (Fig. 2 e, f) does not lead to the
kinetic energy change, which simulates the motion of a geostationary satellite without position change
relative to the rotating surface of the Earth. This movement of the satellite must have a source of
energy, the work of which is at least half of the kinetic energy of the «satellite-wheel».

Conclusion. A mechanical model of motion of geostationary satellites of various design and
purpose is developed. Analysis of the mechanical model allows us to estimate the energy consumption
associated with the operation of satellites in the geostationary orbit.

References:

1.  Abashkov V.P. Klassifikaciya metodov modelirovaniya processov obrabotki metallov davleniem. [Classification
of modeling methods for metal forming processes] / V.P. Abashkov, K.N. Solomonov // Universities Proceedings.
Ferrous metallurgy. - 2008. - No. 9. - pp. 25-28.

2. Mandelstam L.I. Lekcii po teorii kolebanij. [Lectures on the theory of oscillations] / L.I. Mandelshtam- M.:
"Science", 1972. - 470 p.

3. Dobrov .V. Development of Scientific Bases of the Dynamics of Machines as a Section of Applied Mechanics /
L.V. Dobrov // Procedia Engineering. — 2015. — V 129. — pp. 863—-872.

4. Newton I. The Principia, Mathematical principles of natural philosophy / I. Newton. — London: Printed for
Benjamin Motte, 1729. — 688 p.

5. Loitsyansky L.G. Kurs teoreticheskoj mekhaniki [The course of theoretical mechanics: in 2 volumes] / L.G.
Loytsyansky, A.L. Lurie. - M.: Drofa, 2006 .- 719 p. - V 2.

6. Geostationary orbit. Available via DIALOG. https://en.wikipedia.org/wiki/Geostationary orbit. Accessed 30 Jan
2020.

7. Kozhevnikov S. N. Teoriya mekhanizmov i mashin. [Theory of mechanisms and machines]. 4th ed., revised and
added. / S. N. Kozhevnikov - Kiev: Mashgiz, 1973.- 592 p.

DOPYM IHKEHEPIB MEXAHIKIB 117



XXI'MHTK “lNMporpecnBHa TexHika, TeXHOJIOrifl Ta iHXXeHepHa ocBiTa”, 2020

8. Ilyin A.A. Obespechenie orientacii malogo sputnika, stabiliziruemogo sobstvennym vrashcheniem. [Ensuring
orientation of a small satellite stabilized by its own rotation] / A.A. Ilyin, M.Yu. Ovchinnikov, V.I. Penkov - M.:
Preprint named after M. V. Keldysh RAS, 2004. - No. 83. - pp. 3-28.

MEXAHIYHE MOJAEJIOBAHHSA PYXY I'EOCTAHIOHAPHUX
CYIIYTHUKIB

Hoopos L.B., CromiueB A.B.

Anomayis. Iloxkazano eniue cumu inepyii Ak 6HYMPIWHLOL 00'€MHOI NOMEHYIIHOL cunu Ha Xapakmep nepemiujerHs
yenmpy macu meepoozo mina (Wmy4Ho2o CynymHuKa) Ha 2e0CmayionapHtiu opoimi. Pospobieno mexanizm mooentogarnms
nepemiwjeHHs: CynymHUKa Ha 2e0CmayioHaprii opoimi, skutl Micmums 0bepmosi OucKku pizHozo oiamempy i 3abe3neyye
PiBHOMIpHUL pYX OCi 00epmaHHsa OUCKA MAno2o Jiamempa HABKOI0 OUCKA DLnbui020 diamempad npu pi6HUX 8ETUUUHAX
KYMOo8ux weuoxocmeti 00epmants yux ouckie. Ilpu ybomy mexarizm 3abe3neyye Mo’ciusicms 06epmantsa OUCKA Mai020
diamempa 5K 6 CMOpPOHY 00epMAaHHA OUCKA 8elUK020 diamempd, MaxK i 8 NPomuiexcHy cmopoHy. B obox eunadkax
CYMAapHa KiHemUu4Ha eHepeisi Mano2o OUCKA 3AMUUUAEMbC NOCMIUHOI0, alle 3MIHI0I0MbCA 8UMpamu eHepeii 0dxcepei cul,
wo 3abesneuyroms KOdcHe 3 yux pyxie. Bcmawnosnena 3axonomipuicms 6yOe cnpageoausoi i Onisd 2eocmayioHapHux
CYNYMHUKIB PI3HOI KOHCMPYKYTT | NPUSHAYEHHSL.

Kniouosi crosa: meepoe mino, cuna inepyii, epasimayiiine noje, Cynymuux, Mexamizm.

MEXAHNYECKOE MOJIEJIMPOBAHUE JIBUKEHUSA
I'EOCTAIIMOHAPHBIX CITYTHUKOB

Hoopos U.B., CemuueB A.B.

Aunomayus. Ilokazano enusnue cuivl uHepyuu KAK 6HYymMpeHHel 00beMHOU NOMEHYUANbHOU CUIbl HA XApakmep
nepemeweHus Yyenmpa Maccol meepoo2o meid (UCKyCCmMEeHH020 CRYMHUKA) Ha 2e0cmayuorapHol opoume. Paspaboman
MEXAHUZM MOOETUPOBAHUS NEPEMeEUeHUs. CRYIMHUKA HA 2e0CTAYUOHAPHOU OpOUme, KOMOpblil COOEPICUT BPAUATOUUECs]
OQUCKU PA3TUYHO20 duamempa u obecneyusaem pagHoMepHoe 0BUINICEHUE OCU 8PAWYEHUST OUCKA MATI020 OUAMEMPA GOKPY2
oucka 6oIbULe20 OUaMempa NPU PAGHLIX BETULUHAX Y2TI0GbIX CKOPOCHEU 8paujerust Smux ouckos. Ilpu smom mexanuzm
obecneuugaen G03MOJNCHOCHb GPAWEHU. OUCKA MAN020 OUAMEmpA KAK 6 CMOPOHY 6paujenusi Oucka 0Oonbulo2o
ouamempa, max u 8 NPOMUBONOLOANCHYIO CHOPOHY. B 0060ux ciyyasx cymmaphas KUHemu4ecKkas sHepeust Mauioeo Oucka
ocmaemcst ROCMOSIHHOU, HO MEHSIIOMCSL 3ampamuvl IHEePSUU UCHIOYHUKOS CUL, 0DeCHeyusarowmux Kaxicooe u3 9mux
O08udiceHUll. YCmanoeieHHas 3aKOHOMEPHOCMb 6yoem Cnpaseonusoli u 0iisl 2e0CMAYUOHAPHLIX CIYMHUKO8 PA3IUYHOU
KOHCMPYKYUU U HAZHAYEHUSL.

Kniouegvie cnosa: meepooe meno, cuna unepyuu, 2pasumayioHHoe noie, CnymHuK, MEXaHu3M.
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