УДК 621.73

К ВОПРОСУ РАСШИРЕНИЯ СОРТАМЕНТА ГОРЯЧЕКАЛИБРОВАННОГО КРУГЛОГО ПРОКАТА

Смирнов Е.Н., Скляр В.А., Горожанкин А.С., Пивоваров Р.Е.

Старооскольский технологический институт им. А.А.Угарова (филиал НИТУ "МИСиС")

Аннотация. В наше время в прокатном производсте возрастает потребность в прокатных блоках с трехвалковыми клетями. Среди их преимуществ можно указать возможность реализации процесса низкотемпературной прокатки. В данной работе выдвинута гипотеза о возможном влиянии макроструктурного состояния раската на формируемую результирующую точность готового профиля.

Ключевые слова: прокатные блоки, РКБ, стали.

В последние 20-25 лет востребованность прокатных блоков с трехвалковыми клетями имеет тенденцию к росту. Это обусловлено тем, что наряду с традиционными их преимуществами (увеличение скорости прокатки, повышение точности профиля, сокращение поля допусков до \pm 0,1 мм, улучшение технико-экономических показателей работы станов) появилась возможность реализовывать процесс низкотемпературной прокатки.

В России непрерывные сортовые станы стали оснащаться блоками калибрующих клетей - РКБ (прецизионный калибровочный стан) после 2000 года. В частности, на ОАО "Оскольский электрометаллургический комбинат" – ОАО ОЭМК в 2002 был введен РКБ в мелкосортной линии стана 350 фирмы КОСКЅ (призводство кругов Ø12-40мм), а в 2017 году – в среднесортной линии стана 350 типа PSM® 380/4 (призводство кругов Ø 25-83мм). В 2016 году на стане 350 филиала ООО "УГМК-Сталь" в Тюмени - МЗ "Электросталь Тюмени" смонтирован РКБ фирмы Danieli (производство кругов Ø10-42мм и эквивалентных профилей шестигранного сечения с высокой точностью геометрических размеров).

Использование РКБ для реализации процесса низкотемпературной прокатки (таблица 1) создало предпосылки для дальнейшего усовершенствования данной системы. Дело в том, что использование на современных непрерывных сортовых станах исключительно непрерывнолитой заготовки, потребовало определения (в условиях каждого из станов) максимального сечения проката, в котором удается достичь полной проработки металла. Не выполнение данного условия приводит к тому, что в сечении раската выявляются следы литой структуры (рис. 1).

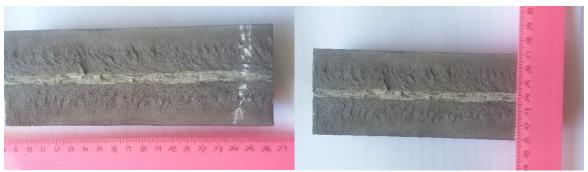


Рис. 1 - Продольный темплет круга Ø65 мм из стали 45: исходное сечение заготовки 170Х170 мм

В этом случае, использование РКБ с диаметром валков на уровне 370 мм не обеспечивает, по всей видимости, проникновения деформации во внутренний слой подката, и как следствие - получение в готовом профиле неравномерной проработки металла по сечению профиля.

Все вышеизложенное, в дальнейшем, находит свое отражение в гипотезе о возможном влиянии макроструктурного состояния раската на формируемую результирующую точность

готового профиля. Смысл данной гипотезы сводится к тому, что наличие разных структурных составляющих, обладающих различными коэффициентами линейного расширения, будет приводить к возрастанию величины колебаний диаметра круга в одном сечении, а также в сечениях по длине прутка.

Таблица 1 Чистовая прокатка круглого проката с использованием РКБ в потоке ЛПК-5 компании BAOSTEEL SHANGHAI

Группа стали	Т-ра на входе клети №7, °С	Т-ра на входе РКБ, °С	Т-ра на входе холодиль- ника, °С	Система DSC	Замедлен- ное охлаж- дение
Аустенитная	1030-1070	970-	-	Не исполь.	Не исполь.
нержавеющая сталь		1030			
Аустенитная клапанная	1100-1120	980-	-	Не исполь.	Не использ.
нержавеющая сталь		1030			
Мартенситная	1020-1100	950-	-	Использ.	Использ.
нержавеющая сталь		1000			
Ферритная	950-970	880-920	870-890	Не исполь.	Использ.
нержавеющая сталь					
Подшипниковая сталь	970-990	780-840	720-760	Использ.	Не использ.
Пружинная сталь	950-970	780-840	780-820	Использ.	Не использ.
Сталь для холодной высадки	950-970	840-860	820-840	Использ.	Не использ.
Низколегированная	950-970	820-860	800-840	Использ.	Не использ.
сталь					
Углеродистая	950-970	860-900	840-860	Использ.	Не использ.
конструкционная сталь					
Автоматная сталь	950-970	880-920	860-880	Использ.	Не использ.

Косвенным подтверждениям правомерности подобной гипотезы может служить тот факт, что ряд предприятий Германии, для прокатки из качественной стали круглого проката сечением Ø 33-55 мм (исходное сечение заготовки 120х120 мм÷150х150 мм) использовали трехвалковые клети с диаметром валков 500мм. Это оправдано, с точки зрения основных положений теории прокатки: чем больше диаметр валков, тем больше глубина проникновения деформации и выше качество проработки структуры металла.

Список литературы:

- 1. Бочков $H.\Gamma$. Производство качественного металла на современных сортовых станах / $H.\Gamma$. Бочков. M.: Металлургия, 1988. 312 с.
- 2. *Амерлинг А.Ю*. Существенное улучшение качества продукции и производительности станов для прокатки проволоки и сорта с гибкой системой блоков фирмы КОКС / А.Ю. Амерлинг // сб. науч. Тр. Черная металлургия России и стран СНГ в XXI веке. 6-10 июня, 1994 г. М.: Металлургия. т.3. С. 249 255.
- 3. Γ ладков Γ .А. Прокатка особо точных профилей / Γ .А. Гладков, Ф.Е. Долженков, Л.Н. Прищенко М.: Металлургия, 1979.- 215с.
 - 4. Минкин А.В. Расчет системы вытяжных калибров / А.В. Минкин М.: Металлургия, 1989.- 208 с.
- 5. Долженков Ф.Е. Холодная прокатка круглой и шестигранной стали малых размеров // Сб. науч. тр. Обработка металлов давлением. Краматорск.: ДГМА, 2002. С. 149 154.
- 6. Долженков Φ .Е. Калибровка валков в системах круг трехгранник и круг- стрельчатый трехгранник для холодной прокатки тонкой проволоки в блоках трехвалковых клетей // Металл и литье Украины, 2000. С. 53-57.
- 7. *Смирнов А.Н.* Вопросы использования непрерывнолитой заготовки для производства сортового проката из конструкционных сталей / Смирнов А.Н., Смирнов Е.Н., Скляр В.А., Белевитин В.А., Пивоваров Р.Е. // Сталь. 2018. №4. С.7-12.