УДК 539.3

Шарувата попередньо напружена полоса на пружній основі при дії рухомого навантаження

Ю.П. Глухов

Інститут механіки імені С.П. Тимошенка НАНУ, Київ, Україна

Анотація. Виконана постановка двовимірних динамічних лінеаризованих задач про усталений рух пружної багатошарової основи з початковими напруженнями при дії поверхневого навантаження, що рухається з постійною швидкістю. За допомогою методу інтегральних перетворень Фур'є отриманий в загальному вигляді фундаментальний розв'язок задач при різних умовах контакту елементів багатошарового середовища і швидкостях руху навантаження.

Ключові слова: шаруватий півпростір; початкові напруження; рухоме навантаження

Загальна постановка класу задач, що досліджується, виглядає наступним чином. Розглядається багатошарова смуга, що складається із N шарів, які лежать на пружному напівпросторі або жорсткій основі. Шари пронумеровані по порядку $s = \overline{1, N}$ зверху вниз. Порядковий номер підстилаючого напівпростору - N+1. Граничні поверхні шарів плоскі і паралельні між собою. Товщина шарів довільна і рівна h_s . Елементи шаруватого середовища складаються з стисливих або нестисливих попередньо напружених ізотропних нелінійнопружних матеріалів з довільною формою пружного потенціалу. У випадку ортотропного тіла вважаємо, що пружно-еквівалентні напрямки співпадають з напрямками осей вибраної системи координат.

Вважаємо, що початковий напружено-деформований стан шаруватого середовища є однорідним. Багатошаровий напівпростір віднесений до декартової системи координат ξ_i (*i* = 1,2,3), яка відповідає початковому деформованому стану.

До вільної границі першого шару прикладено навантаження, що рухається з постійною швидкістю v на протязі великого проміжку часу і не залежить від координати ξ_3 . Відносно системи координат, зв'язаної з цим навантаженням, існує усталений плоский деформований стан.

Координати рухомої системи координат визначаються співвідношеннями

$$y_1 = \xi_1 - vt; \quad y_2 = \xi_2.$$
 (1)

Також припускаємо, що напруження, що виникають за рахунок дії навантаження, значно менші початкових напружень. Вказане припущення дозволяє застосовувати лінеаризовану теорію пружності [1] для опису додаткового напруженого стану, викликаного дією навантаження.

При таких припущеннях з урахуванням загальних розв'язків плоских динамічних задач лінеаризованої теорії пружності для тіл з початковими напруженнями загальна постановка плоских задач про усталений рух пружної багатошарової смуги, що лежить на пружному напівпросторі або жорсткій основі, включає:

рівняння руху елементів багатошарового середовища

$$\left(\eta_1^{\{s\}2} \frac{\partial^2}{\partial y_1^2} + \frac{\partial^2}{\partial y_2^2}\right) \left(\eta_2^{\{s\}2} \frac{\partial^2}{\partial y_1^2} + \frac{\partial^2}{\partial y_2^2}\right) \chi^{\{s\}(j)} = 0; \quad j = 1, 2; \quad s = \overline{1, N+1};$$

$$(2)$$

і граничні умови при $y_2 = 0$

ФОРУМ ІНЖЕНЕРІВ МЕХАНІКІВ 2024

Секція Сучасні проблеми механіки деформівного твердого тіла

$$\tilde{Q}_{21}^{\{1\}} = \delta_{\theta N} P_1 \delta(y_1); \quad \tilde{Q}_{22}^{\{1\}} = P_2 \delta(y_1); \tag{3}$$

і при $y_2 = -h_s$

$$u_{2}^{\{s\}} = u_{2}^{\{s+1\}}; \ \tilde{Q}_{22}^{\{s\}} = \tilde{Q}_{22}^{\{s+1\}}; \ \tilde{Q}_{21}^{\{s\}} = \theta_{1}^{\{s\}} \tilde{Q}_{21}^{\{s+1\}}; (1 - \theta_{1}^{\{s\}}) \tilde{Q}_{21}^{\{s+1\}} = \theta_{1}^{\{s\}} \left(u_{1}^{\{s+1\}} - u_{1}^{\{s\}} \right); \ s = \overline{1, N};$$

$$(4)$$

Вивчалося два варіанти контакту між елементами багатошарового середовища і основи: жорсткий та нежорсткий. Для жорсткого контакту $\theta_1^{\{s\}} = 1$, а для нежорсткого контакту $\theta_1^{\{s\}} = 0$.

Параметр θ в умовах (3) визначається по формулі $\theta = \sum_{s=1}^{N} \theta_1^{\{s\}}$.

Функції $\eta_i^{\{s\}}$ в рівняннях руху (2) визначаються із рівнянь

$$\eta^{\{s\}4} - 2A^{\{s\}}\eta^{\{s\}2} + A_1^{\{s\}} = 0, \tag{6}$$

де для стисливого тіла

$$2A^{\{s\}}\tilde{\omega}_{2222}^{\{s\}}\tilde{\omega}_{2112}^{\{s\}} = \tilde{\omega}_{2222}^{\{s\}} \left(\tilde{\omega}_{1111}^{\{s\}} - \tilde{\rho}^{\{s\}} \mathbf{v}^2\right) + \tilde{\omega}_{2112}^{\{s\}} \left(\tilde{\omega}_{1221}^{\{s\}} - \tilde{\rho}^{\{s\}} \mathbf{v}^2\right) - \left(\tilde{\omega}_{1122}^{\{s\}} + \tilde{\omega}_{1212}^{\{s\}}\right)^2; A_1^{\{s\}}\tilde{\omega}_{2222}^{\{s\}}\tilde{\omega}_{2112}^{\{s\}} = \left(\tilde{\omega}_{1111}^{\{s\}} - \tilde{\rho}^{\{s\}} \mathbf{v}^2\right) \left(\tilde{\omega}_{1221}^{\{s\}} - \tilde{\rho}^{\{s\}} \mathbf{v}^2\right); \quad \tilde{\rho}^{\{s\}}\lambda_1^{\{s\}}\lambda_2^{\{s\}}\lambda_3^{\{s\}} = \rho^{\{s\}};$$

$$\tag{7}$$

а для нестисливого

$$2A^{\{s\}}\tilde{q}_{22}^{\{s\}2}\tilde{\kappa}_{2112}^{\{s\}} = \tilde{q}_{11}^{\{s\}2}\tilde{\kappa}_{2222}^{\{s\}} + \tilde{q}_{22}^{\{s\}2}\left(\tilde{\kappa}_{1111}^{\{s\}} - \tilde{\rho}^{\{s\}}\mathbf{v}^{2}\right) - 2\tilde{q}_{11}^{\{s\}}\tilde{q}_{22}^{\{s\}}\left(\tilde{\kappa}_{1122}^{\{s\}} + \tilde{\kappa}_{1212}^{\{s\}}\right);$$

$$A_{1}^{\{s\}}\tilde{q}_{22}^{\{s\}2}\tilde{\kappa}_{2112}^{\{s\}} = \tilde{q}_{11}^{\{s\}2}\left(\tilde{\kappa}_{1221}^{\{s\}} - \tilde{\rho}^{\{s\}}\mathbf{v}^{2}\right); \quad \tilde{q}_{ij}^{\{s\}} = \delta_{ij}\lambda_{i}^{\{s\}}q_{i}^{\{s\}}; \quad \tilde{\rho}^{\{s\}} = \rho^{\{s\}};$$

$$(8)$$

 $\rho^{\{s\}}$ – щільність матеріалу елементів багатошарового середовища в природному стані. $\tilde{\omega}^{\{s\}}$ і $\tilde{\kappa}^{\{s\}}$ – параметри, що характеризують матеріал елементів багатошарового середовища.

Компоненти напружено-деформованого стану елементів багатошарового середовища визначаються по формулам

$$u_{i}^{\{s\}} = -\beta_{i1}^{(i)\{s\}} \frac{\partial^{2} \chi^{(i)\{s\}}}{\partial y_{1} \partial y_{2}} + \left(\sum_{p=1}^{2} \beta_{ip}^{(j)\{s\}} \frac{\partial^{2}}{\partial y_{p}^{2}}\right) \chi^{(j)\{s\}};$$

$$\tilde{Q}_{ij}^{\{s\}} = \sum_{k=1}^{2} \left(\sum_{p=1}^{2} \alpha_{ij}^{(pk)\{s\}} \frac{\partial^{2}}{\partial y_{p}^{2}}\right) \frac{\partial \chi^{(k)\{s\}}}{\partial y_{k-(-1)}^{k} \delta_{ij}}; \quad i, j = 1, 2.$$
(9)

При викладених вище умовах маємо плоску усталену задачу в площині y_1Oy_2 , що полягає в спільному розв'язуванні рівнянь руху (2) при відповідних граничних умовах на поверхні першого шару (3), умов контакту (4) або (5) і умов затухання на нескінченності.

Таким чином, при використанні загальних розв'язків плоских динамічних задач лінеаризованої теорії задачі, що розглядаються, зводяться до краєвих задач для функцій $\chi^{(j)}$ (j = 1, 2).

Поставлені крайові задачі розв'язуються за допомогою перетворення Фур'є по змінній у₁.

Розв'язок задачі отримуємо в загальному вигляді для стисливого та нестисливого матеріалів з довільним пружним потенціалом для теорії скінчених і двох варіантів малих початкових деформацій, для випадків нерівних і рівних коренів характеристичних рівнянь, для

різних умов сполучення елементів шаруватого середовища і для будь-якої швидкості руху навантаження (дозвукової, трансзвукової і надзвукової).

Розв'язок перетворених рівнянь (2) з врахуванням затухання на нескінченності будемо шукати у вигляді:

$$\chi^{\{s\}(j)F} = \left[1 - \delta_{j2}^{\{s\}} (1 - \delta_{\mu_{1}\mu_{2}}^{\{s\}})\right] \left\{ C_{1}^{\{s\}(j)} e^{k_{1}k\eta_{1}^{\{s\}}y_{2}} + (1 - \delta_{s}^{N+1})C_{3}^{\{s\}(j)} e^{-k_{2}k\eta_{2}^{\{s\}}(y_{2}+h_{s})} + \left[1 - \delta_{\mu_{1}\mu_{2}}^{\{s\}} + \delta_{\mu_{1}\mu_{2}}^{\{s\}} (y_{2}+h_{s})\right] \left(C_{2}^{\{s\}(j)} e^{k_{2}k\eta_{2}^{\{s\}}y_{2}} + (1 - \delta_{s}^{N+1})C_{4}^{\{s\}(j)} e^{-k_{1}k\eta_{1}^{\{s\}}(y_{2}+h_{s})}\right) \right\};$$
(10)

де $C_m^{\{s\}(j)}$ $(j = 1, 2; m = \overline{1, 4})$ – постійні інтегрування, k – параметр перетворення Фур'є,

$$\delta_{\eta_1\eta_2}^{\{s\}} = \begin{cases} 0, & \eta_1^{\{s\}} \neq \eta_2^{\{s\}} \\ 1, & \eta_1^{\{s\}} = \eta_2^{\{s\}} \end{cases}; \quad \delta_{j2}^{\{s\}} = \begin{cases} 0, & j=1 \\ 1, & j=2 \end{cases}$$

В представленні (10) $k_j \equiv \sigma = |k|/k$, якщо $\eta_j^{\{s\}^2} > 0$, і $k_j = i$, якщо $\eta_j^{\{s\}^2} < 0$. В випадку, якщо $\eta_j^{\{s\}}$ приймає комплексні значення, то в представленні розв'язку (10) необхідно покласти $k_j = 1$, $\eta_j = \sigma \operatorname{Re} \eta_j - (-1)^j i \operatorname{Im} \eta_j$, j = 1, 2.

Введемо постійні інтегрування

$$C_{m}^{\{s\}(1)} = C_{m}^{\{s\}}; \ m = 1,4; \ C_{m}^{\{s\}(2)} = i\gamma_{m}^{\{s\}}C_{m}^{\{s\}}; \ C_{m+2}^{\{s\}(2)} = i\gamma_{3-m}^{\{s\}}C_{m+2}^{\{s\}}; \ \gamma_{j}^{\{s\}} = k_{j}\eta_{j}^{\{s\}}; \ m = 1,2.$$
(11)

Компоненти напружено-деформованого стану в області зображень (11) з врахуванням можна записати в вигляді:

$$\widetilde{Q}_{nj}^{\{s\}F} = i^{1-\delta_{nj}} k^{2} \sum_{m=1}^{2} \left[\gamma_{nj}^{\{s\}(m)} C_{m}^{\{s\}} e^{k\gamma_{m}^{\{s\}} y_{2}} + (1-\delta_{s}^{N+1}) \gamma_{nj}^{\{s\}(2+m)} C_{2+m}^{\{s\}} e^{-k\gamma_{m}^{\{s\}}(y_{2}+h_{s})} \right];$$

$$u_{n}^{\{s\}F} = i^{\delta_{1n}} k \sum_{m=1}^{2} \left[\alpha_{n}^{\{s\}(m)} C_{m}^{\{s\}} e^{k\gamma_{m}^{\{s\}} y_{2}} + (1-\delta_{s}^{N+1}) \alpha_{n}^{\{s\}(2+m)} C_{2+m}^{\{s\}} e^{-k\gamma_{m}^{\{s\}}(y_{2}+h_{s})} \right];$$

$$n, j = 1, 2.$$
(12)

Параметри $\gamma_{nj}^{\{s\}(n)}$, $\alpha_1^{\{s\}(1)}$ в формулах (12) є функціями параметрів $k, \delta_{\mu_1\mu_2}^{\{s\}}, \gamma_p^{\{s\}}, \beta_{im}^{(j)\{s\}}, \alpha_{ij}^{(km)\{s\}}$.

Якщо підставимо (10) в перетворену систему рівнянь (3), (4), отримаємо систему алгебраїчних рівнянь відносно невідомих $C_m^{\{s\}}$:

$$\sum_{m=1}^{2} \left(\gamma_{21}^{\{1\}(m)} C_{m}^{\{1\}} + \gamma_{21}^{\{1\}(2+m)} C_{2+m}^{\{1\}} e^{-k\gamma_{m}^{\{s\}}h_{1}} \right) = -ik^{-2} \delta_{\theta N} P_{1}^{F};$$

$$\sum_{m=1}^{2} \left(\gamma_{22}^{\{1\}(m)} C_{m}^{\{1\}} + \gamma_{22}^{\{1\}(2+m)} C_{2+m}^{\{1\}} e^{-k\gamma_{m}^{\{s\}}h_{1}} \right) = k^{-2} P_{2}^{F};$$

$$\sum_{m=1}^{2} \left(\alpha_{2}^{\{s\}(m)} C_{m}^{\{s\}} e^{-k\gamma_{m}^{\{s\}}h_{s}} + \alpha_{2}^{\{s\}(2+m)} C_{2+m}^{\{s\}} \right) - \sum_{m=1}^{2} \left(\alpha_{2}^{\{s+1\}(m)} C_{m}^{\{s+1\}} e^{-k\gamma_{m}^{\{s\}}h_{s}} + \alpha_{2}^{\{s+1\}(2+m)} C_{2+m}^{\{s+1\}} e^{-k\gamma_{m}^{\{s+1\}}\Delta h_{s+1}} \right) = 0;$$

$$\sum_{m=1}^{2} \left(\gamma_{22}^{\{s\}(m)} C_{m}^{\{s\}} e^{-k\gamma_{m}^{\{s\}}h_{s}} + \gamma_{22}^{\{s\}(2+m)} C_{2+m}^{\{s\}} \right) - \sum_{m=1}^{2} \left(\gamma_{22}^{\{s+1\}(m)} C_{m}^{\{s+1\}} e^{-k\gamma_{m}^{\{s+1\}}h_{s}} + \gamma_{22}^{\{s+1\}(2+m)} C_{2+m}^{\{s+1\}} e^{-k\gamma_{m}^{\{s+1\}}\Delta h_{s+1}} \right) = 0;$$
(13)

DOPYM INKEHEPIB MEXAHIKIB 2024

Секція Сучасні проблеми механіки деформівного твердого тіла

$$\begin{split} \sum_{m=1}^{2} \left(\gamma_{21}^{\{s\}(m)} C_{m}^{\{s\}} e^{-k\gamma_{m}^{\{s\}}h_{s}} + \gamma_{21}^{\{s\}(2+m)} C_{2+m}^{\{s\}} \right) - \theta_{1}^{\{s\}} \sum_{m=1}^{2} \left(\gamma_{21}^{\{s+1\}(m)} C_{m}^{\{s+1\}} e^{-k\gamma_{m}^{\{s+1\}}h_{s}} + \gamma_{21}^{\{s+1\}(2+m)} C_{2+m}^{\{s+1\}(2+m)} C_{2+m}^{\{s+1\}} e^{-k\gamma_{m}^{\{s+1\}}\Delta h_{s+1}} \right) \right) - \\ - \theta_{1}^{\{s\}} \left[\sum_{m=1}^{2} \left(\alpha_{1}^{\{s+1\}(m)} C_{m}^{\{s+1\}} e^{-k\gamma_{m}^{\{s+1\}}h_{s}} + \alpha_{1}^{\{s+1\}(2+m)} C_{2+m}^{\{s+1\}} e^{-k\gamma_{m}^{\{s+1\}}\Delta h_{s+1}} \right) - \\ - \theta_{1}^{\{s\}} \left[\sum_{m=1}^{2} \left(\alpha_{1}^{\{s+1\}(m)} C_{m}^{\{s+1\}} e^{-k\gamma_{m}^{\{s+1\}}h_{s}} + \alpha_{1}^{\{s+1\}(2+m)} C_{2+m}^{\{s+1\}} e^{-k\gamma_{m}^{\{s+1\}}\Delta h_{s+1}} \right) - \\ - \sum_{m=1}^{2} \left(\alpha_{1}^{\{s+1\}(m)} C_{m}^{\{s+1\}} e^{-k\gamma_{m}^{\{s+1\}}h_{s}} + \alpha_{1}^{\{s+1\}(2+m)} C_{2+m}^{\{s+1\}} e^{-k\gamma_{m}^{\{s+1\}}\Delta h_{s+1}} \right) - \\ - \sum_{m=1}^{2} \left(\alpha_{1}^{\{s+1\}(m)} C_{m}^{\{s+1\}} e^{-k\gamma_{m}^{\{s+1\}}h_{s}} + \alpha_{1}^{\{s+1\}(2+m)} C_{2+m}^{\{s+1\}} e^{-k\gamma_{m}^{\{s+1\}}\Delta h_{s+1}} \right) - \\ - \sum_{m=1}^{2} \left(\alpha_{1}^{\{s+1\}(m)} C_{m}^{\{s+1\}} e^{-k\gamma_{m}^{\{s+1\}}h_{s}} + \alpha_{1}^{\{s+1\}(2+m)} C_{2+m}^{\{s+1\}} e^{-k\gamma_{m}^{\{s+1\}}\Delta h_{s+1}} \right) - \\ \sum_{m=1}^{2} \left(\alpha_{1}^{\{s+1\}(m)} C_{m}^{\{s+1\}} e^{-k\gamma_{m}^{\{s+1\}}h_{s}} + \alpha_{1}^{\{s+1\}(2+m)} C_{2+m}^{\{s+1\}} e^{-k\gamma_{m}^{\{s+1\}}\Delta h_{s+1}} e^{-k\gamma_{m}^{\{s+1\}}\Delta h_{s+1}} e^{-k\gamma_{m}^{\{s+1\}}\Delta h_{s+1}} e^{-k\gamma_{m}^{\{s+1\}}\Delta h_{s+1}} \right) - \\ \sum_{m=1}^{2} \left(\alpha_{1}^{\{s+1\}(m)} C_{m}^{\{s+1\}} e^{-k\gamma_{m}^{\{s+1\}}h_{s}} + \alpha_{1}^{\{s+1\}(2+m)} C_{2+m}^{\{s+1\}} e^{-k\gamma_{m}^{\{s+1\}}\Delta h_{s+1}} e^{-k\gamma_{m}^{\{s+1\}}A - k\gamma_{m}^{\{s+1\}}\Delta h_{s+1}} e^{-k\gamma_{m}^{\{s+1\}}A - k\gamma_{m}^{\{s+1\}}A - k\gamma_{m}^{\{s+1\}}A e^{-k\gamma_{m}^{\{s+1\}}A - k\gamma_{m}^{\{s+1\}}A e^{-k\gamma_{m}^{\{s+1\}}A - k\gamma_{m}^{\{s+1\}}A e^{-k\gamma_{m}^{\{s+1\}}A - k\gamma_{m}^{\{s+1\}}A e^{-k\gamma_{m}^{\{s+1\}}A - k\gamma_{m}^{\{s+$$

Таким чином, розв'язок задачі про усталений рух багатошарової пружної смуги з початковими напруженнями під дією рухомого навантаження в області зображень Фур'є зводиться до розв'язку системи алгебраїчних рівнянь (13) відносно невідомих $C_m^{\{s\}}$.

Для того, щоб перейти в формулах (12) до оригіналів, потрібно скористатися зворотнім перетворенням Фур'є.

Список літератури

1. Гузь А.Н. Упругие волны в телах с начальными (остаточными) напряжениями. – Киев: «А.С.К», 2004. 672 с.

Layered prestressed strip on an elastic base under a moving load

Yu. Glukhov

Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kyiv, Ukraine

Abstract. Two-dimensional dynamic linearised problems on the steady-state motion of an elastic multilayer base with initial stresses under the action of a surface load moving with a constant velocity are formulated. Using the method of integral Fourier transforms, the fundamental solution of the problems is obtained in a general form under different conditions of contact of the elements and speeds of the load. Keywords: layered half-space, initial stresses, moving load